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ABSTRACT 
Many document-based applications, including popular Web 
browsers, email viewers, and word processors, have a �Find on this 
Page� feature that allows a user to find every occurrence of a given 
string in the document.  If the document text being searched is 
derived from a noisy process such as optical character recognition 
(OCR), the effectiveness of typical string matching can be greatly 
reduced.  This paper describes an enhanced string-matching 
algorithm for degraded text that improves recall, while keeping 
precision at acceptable levels.  The algorithm is more general than 
most approximate matching algorithms and allows string-to-string 
edits with arbitrary costs. We develop a method for evaluating our 
technique and use it to examine the relative effectiveness of each 
sub-component of the algorithm.  Of the components we varied, 
we find that using confidence information from the recognition 
process lead to the largest improvements in matching accuracy. 
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1. INTRODUCTION 
In this paper we describe an enhanced version of the standard 
string search feature available in many document viewing and 
editing applications.  This feature allows the user to find every 
occurrence of a given word or phrase within a single document.  
Our algorithm can reliably detect correct matches even when there 
are multiple errors in the underlying text, providing a useful 
increase in recall while maintaining acceptable precision. 
This is important for documents whose text is directly obtained 
from processes such optical character recognition (OCR).  Since 
the recognition process will occasionally misrecognize letters or 
combinations of letters with similar shapes, errors appear in the 
resulting text.  Typical error rates on a high-quality image can vary 

widely depending on the complexity of the layout, scan resolution, 
and so on.  On average, for common types of documents, error 
rates for OCR are often in the range of 1% to 10% of the total 
characters on the page. This translates to word error rates of 
roughly 5% to 50% for English. 
Our approach, described in detail in Section 3, is to pre-filter 
initial match candidates using an existing fast approximate match 
procedure.  We then score each candidate using an error model 
based on the noisy channel model of Shannon [12].  In Section 4 
we present a technique for evaluating the algorithm at various 
parameter settings to examine the effectiveness and tradeoffs of 
our model. 

2. RELATED WORK 
The problem of evaluating and improving retrieval performance on 
degraded text has been widely studied.  Most of this work has 
focused on known-item or ranked document retrieval using a pre-
computed index.  For example, the TREC 4 and 5 OCR confusion 
tracks [4] and more recent TREC Spoken Document Retrieval 
evaluations [2], have been the basis for several studies.  In general, 
document retrieval as measured by usual precision and recall 
methods is fairly robust in the face of OCR recognition errors, 
assuming relatively good scanned images [13][15].  This is 
because a document usually consists of many occurrences of 
individual words, many of which will be correctly recognized.  An 
extensive analysis of the effect of OCR errors and other types of 
data corruption on information retrieval can be found in 
Mittendorf [6].  Specific application examples include the video 
mail retrieval system of Jones et al. [3], and a spoken document 
retrieval system developed by Ng and Zue [9]. 
In contrast to document retrieval, we are interested in the situation 
where we wish to find every instance of a word or phrase within a 
single document very quickly.  The �Find on this Page� option in 
popular Web browsers or Microsoft Office applications are 
examples of the functionality we wish to support.  In our 
application, recognition errors will cause retrieval failures and thus 
we need to use approximate matching techniques.  
The literature on approximate string matching is extensive.  A 
good overview may be found in [8].  Most approaches use an �edit 
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distance� model of errors in which single character insertions, 
deletions, and substitutions are allowed, with different costs 
associated with the different transformations.  The popular 
approximate matching tool agrep [14], and the string similarity 
techniques of Ristad and Yianalos [11] can both accept fairly 
sophisticated error model descriptions, but are not quite as general 
as our algorithm, which can use string to string edits with arbitrary 
costs as well as make use of optional confidence data and language 
models.  Brill and Moore use this more general model for 
automatic spelling correction [1].  Some commercial OCR 
products such as zyFind� [16] have incorporated an error-tolerant 
phrase search based on simple edit distance, but these features are 
equivalent to just using the first pass of our algorithm.  Most of the 
work on approximate string matching examines the computational 
complexity of algorithms.  There has been comparatively little 
work that applies the more complex recognition error models and 
evaluates their accuracy in a systematic fashion as we do in this 
paper. 

3. ALGORITHM DESCRIPTION 
The algorithm begins with the following inputs: 

! A clean query string, without typographical or other errors. 
! The document text to be searched, which includes OCR 

errors. 
! An initial threshold value that indicates the error tolerance to 

be used for finding initial candidates. 
! A confusion set describing the most likely types of OCR 

errors, along with their edit costs. 
! Optionally, a table giving the confidence (likelihood of 

correctness) for each character and/or word in the OCR text. 
! A final threshold value used to set the maximum acceptable 

edit cost. 
To find each match, our algorithm passes through the phases 
shown in Figure 1. 
First, a standard fast approximate string-match algorithm is used as 
a pre-filter to obtain match candidates.  The key property of this 
step is that it eliminates unlikely matches very quickly.   
Second, once the pre-filter identifies a possible match candidate, 
we perform a noisy channel analysis, using a dynamic 
programming algorithm to examine all possible partitioning 
alternatives to select optimal candidates.  The analysis uses an 
error model which is trained on representative output from the 
OCR engine. 
Third, OCR confidence data is used, if available, to adjust the 
candidate�s score, along with optional word-based heuristics or 
language models. 
Finally, we make a match decision based on whether the 
candidate�s score exceeded a final threshold.   
Each of these phases is described in detail in the following 
sections. 
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 Figure 1.  Algorithm Flow Diagram 
 

3.1 Pre-filtering 
To find initial match candidates we use a standard approximate 
string matching routine with a �generous� maximum error 
threshold.  We use a variant of the method developed by Myers in 
[7].  His algorithm has been optimized for speed and to use 
minimal storage space.  
The initial threshold, K, indicates the average number of errors per 
character to be permitted in a match candidate.  An error is 
considered to be an insertion, deletion, or substitution of a single 
character relative to the original string.  Larger values of K 
increase recall slightly but use more computation time, because 
more candidates must be examined.  When K = 0 this is equivalent 
to exact matching.  For our experiments we used a value of K = 
5/8, which allows an average of 5 character errors for an 8 letter 
word.  We multiply K by the length of the query string to obtain 
the maximum edit distance to be allowed when matching, and 
search forward through the text until a match candidate is found.  
The final result of this phase is a set of match candidates, each 
described by a position and a length relative to the input buffer. 

3.2 Noisy Channel Cost Analysis 
The noisy channel model is one in which source data (for example, 
the original document text, encoded as an image) is perturbed by 
noise introduced during a channel process (scanning and OCR), 
thereby introducing errors into the output data (OCR output text).  
The result of noisy channel analysis is a probability estimate that a 
query matches the candidate found in the pre-filter phase. 
We model the channel noise introduced during OCR by learning a 
confusion set of typical string-to-string edits.  For example, the 
letter bigram �rn� in the original document is often output as the 
single letter �m� in the OCR document.  Typically the entries in the 
confusion set comprise combinations of no more than three or four 
letters, although this is a practical restriction invoked during 
training, not a limitation of the algorithm.  
Each string-to-string edit in the confusion set has an associated 
probability, namely, the posterior probability p(s | R), where s 
represents the original string and R is the corresponding erroneous 
OCR string.  This value is obtained via Bayes Theorem, in which, 
ignoring the constant denominator, p(s | R) is given by p(R | s) · 
p(s).  The training process by which we obtain estimates for  
p(R | s) and p(s) is described in Section 3.3.  We take the negative 
logarithm of p(R | s) and call this the edit cost of the string-to-



string edit.  It is stored in the confusion set with the corresponding 
edit entry.  A sample confusion set is shown in Table 1. 
Given a confusion set C of m entries  

{s1 → R1,  s2 → R2, �, sm → Rm} 
which have corresponding edit costs {c1, c2, �, cm}, a query term 
Q, and a candidate match T in the OCR text, we can calculate the 
probability that Q matches T as follows. 
First, let us assume that we have already have a partitioning of the 
query into n substrings {Q1, Q2, �, Qn}, such that for each Qi, 
there is a corresponding set of characters Ti in T (possibly empty).  
If there is more than one possible confusion set entry that matches 
Qi and Ti, we choose the one with lowest cost. Exactly one of these 
possibilities is satisfied for each Qi: 

1. Qi maps without errors to its counterpart Ti , with 
probability pCORRECT(Qi). 

2. Qi has an entry in the confusion set such that it 
maps to Ti according to the entry sj → Rj, with edit 
cost cj. 

3. Qi  maps to some set of characters Ti, but this 
mapping is not in the confusion set.  In this case, 
we estimate the costs by a series of single character 
insertions, deletions, or substitutions.  The 
probabilities of these operations may vary for 
individual characters, but for simplicity we denote 
the overall probabilities as pINSERT(Qi), pDELETE(Qi) 
and pSUBST(Qi) respectively. 

If we denote the set of all possible partitions of Q by Part(Q), and 
assume the transformations are all independent, then we want the 
most likely of all possible partitions, hence: 

p(Q | T) = 
)(

maxarg
QPartD ∈

∏
∈ DQi

p(Qi → Ti)  

We expand the term p(Qi → Ti) in terms of the probabilities for the 
cases above.  Given a specific partition D, we denote the set of all 
Qi that map without errors as Qa, the set that correspond to a 
confusion set entry as Qb, and so on.  After taking the negative 
logarithm, we have an expression for the total edit cost CTOTAL for 
the transformation of Q to T: 

CTOTAL = 
)(

minarg
QPartD ∈
∑

∈
−

DQa

log  pCORRECT(Qa)  

+ ∑
∈ DQb

cb  + ∑
∈

−
DQc

log  pINSERT (Qc)    

+ ∑
∈

−
DQd

log  pDELETE (Qd)  + ∑
∈

−
DQe

log  pSUBST (Qe). 

We obtain the most likely partitioning of the query string using a 
dynamic programming algorithm, setting the costs of pINSERT,  
pDELETE and pSUBST  using statistics derived from the training phase. 
For a concrete example, suppose we are searching for the string 
�amendment� and come across the document text 
�arneadme,nt�.  For this example we set  pCORRECT (x) = 0.9, 
pINSERT (x) = pSUBST (x) = 0.1,  pDELETE (x)  = 0.01  for all strings x, 
and use the edit costs from Table 1. 

 

Table 1.  Example Confusion Set 

s → R - log p(R | s) 
(edit cost) 

am → arn 1.074 

en → ea 0.956 

en → e,n 4.400 

nt → at 1.013 

end → ead 0.708 

end → eud 2.508 

men → rnea 0.858 

me →me, 1.211 

 
We have several different ways that the word �amendment� can be 
partitioned based on this table.  For example: 

1.  am | end | me | nt 
2.  a | men | d | me | nt 

In the first case above, the total edit cost to transform �am | end | 
me | nt� into the corresponding OCR strings �arn | ead | me, | nt� 
would be calculated as follows.   
C1 = - log p(am→ arn) - log p(end → ead) - log p(me→ me,) 
        - log pCORRECT (nt→nt) 
     = 1.074  + 0.708 + 1.211 + 0.105 =  3.098 
Compare this to the optimal partitioning, �a | men | d | me | nt�, 
which gives: 
C2 = - log pCORRECT (a→ a) - log p(men → rnea)  
        - log pCORRECT (d→ d) - log p(me →  me,)  
        - log pCORRECT (nt→nt) 
      = 0.105  + 0.858 + 0.105 + 1.211 + 0.105 =  2.384 
These edit cost values are passed to the third phase for possible 
adjustment before the comparison to the final threshold. 
With the final threshold set to 0.300, and 9 characters in the query 
term, the threshold for this query is 9 · 0.300 = 2.700.  If no other 
modifications to the final threshold or costs are made, case 2 
would be considered a valid match since the candidate cost of 
2.384 is less than the final threshold of 2.700.  Case 1 would not 
be considered a valid match since its score of 3.098 is greater than 
the final threshold of 2.700. 

3.3 Training the Model 
To train our noisy channel error model we selected a subset of files 
not used in the evaluation, amounting to approximately 20% of the 
total text size in each corpus.   
Using this sub-collection, we ran a processing pass similar to that 
used for evaluation in Section 4, but using a high error tolerance � 
typically with an expected error rate of 3 errors every 4 characters.  
Using the syntactic signature method described in Section 4, we 
extract the correct matches from these results to get a set of pairs 
(S, T) where S is a word from the ground-truth file and T is the 
corresponding noisy OCR word. 



For each (S, T) pair, we found the greatest common substrings 
between S and T, from which we derived an initial set of possible 
edits.  We then expanded this set using up to 3 characters of 
context on either side of the edit, for both the ground-truth word 
and the OCR word.  For each edit s → R in this expanded set, we 
kept track of the edit�s overall frequency, the frequency of all other 
edits based on s, and the total frequency of s in the corpus.  From 
this we calculate p(R | s) and thus the edit cost 

c = �log p(R | s). 
We also calculate p(s) and then select the most useful edits � those 
with the highest values of p(R | s) · p(s).  For our experiments we 
kept the top 2500 edits.   

3.4 Optional Processing 
In the third phase, we make use of confidence information and 
heuristics to adjust the candidate�s edit cost.  

3.4.1 Word Heuristics 
Since users often search on one or more complete words, the 
algorithm can be modified to include position-based probabilities 
that reflect the importance that a match be close to a complete 
word or word prefix.  For our experiments we tested for either 
punctuation or whitespace at the start and end of a match, and 
reduced error costs by 0.25 for a word prefix match and 0.50 for 
an entire word match. 

3.4.2 Language Models 
Even when we do not have confidence information from the 
recognizer, we can calculate a rough confidence estimate based on 
simple language models.  Since our documents were in English, 
we used a frequency table of English bigrams (obtained on a 
separate training corpus) and gave either a �low� or �high� 
confidence estimate to any words containing at least one �rare� 
bigram or none, respectively. 

3.4.3 Using Confidence Data 
If the recognition process provides character or word-level 
confidence data, we can use this information.  We do this by 
increasing edit costs in the noisy channel model according to a 
region�s confidence value.  For high-confidence regions, this 
essentially reduces to performing exact matching.  The recognition 
engine may sometimes give an indeterminate confidence value for 
a word, in which case the language model may be optionally 
invoked to supply an estimate.  Ideally, we would make use of 
character-level confidence data, and plan to do so in future 
versions.  Our current implementation only stores word-level 
confidence data in the document to reduce the file size. 

3.5 Match Decision 
In the fourth phase, we compare the final threshold against the 
match candidate�s score.  If the candidate�s score is above the final 
threshold, it is not counted as a match. 

4. EVALUATION 
4.1 Methodology 
We compare baseline word matching performance with our 
algorithm using various sub-components such as the OCR 
confusion set, word heuristics, and word-level confidence. 
We ran experiments using two different test collections. 

1. A subset of 5 documents from the TREC-5 confusion track 
corpus [4].   These documents are from the 1994 Federal Register 
and contain about 20,000 words.  This text has no confidence data 
available, and the OCR conversion was done by NIST.  The 
character error rate for this subset is approximately 20% and the 
word error rate is roughly 90%. 
2. A collection of 200 document images with ground truth text 
and corresponding OCR text, containing approximately 100,000 
English word occurrences.  The OCR text contains word-level 
confidence scores and was generated using an OCR engine 
licensed from Scansoft, Inc.  The character error rate for this set is 
approximately 2% and the word error rate is roughly 10%. 
We perform whitespace-delimited word-breaking and remove 
stopwords from the ground truth files to obtain a list of query 
terms.  For each document, we ask every unique word in the 
ground truth document as a �query�, giving us approximately 
1,500 queries from the first test collection and 15,000 from the 
second. We assume that the query is clean, containing no spelling 
or typographical errors.  There are scenarios where our algorithm 
could be useful with queries containing errors but we do not 
address those in this paper. 
We want to measure how accurately we find each query in the 
OCR�d document.   We define a �true match� as a string in the 
OCR�d document that matches the corresponding query term in 
the ground truth document.  Occasionally, mismatches in the 
original document are corrupted by the OCR process into strings 
that match in the OCR�d document; these are �false matches�.  Any 
query, for which a word exists in the ground truth document, but 
which fails to find the corresponding word in the OCR document, 
is termed a �miss�. 
If the numbers of true matches, false matches, and misses are t, f, 
and m respectively,  then precision p and recall r are derived using 
the formulas: 

ft
tp

+
=  ,   

mt
tr

+
=  

We also report van Reijsbergen�s F-measure [10] to provide a 
single number that combines precision p and recall r for evaluation 
purposes.  This is given by: 

pr
prF

)1(
)(

αα
α

−+
=  

The relative importance given to precision versus recall is 
expressed through the parameter α.  When α = 0.5, they are given 
equal weight.  We include two different values of α, corresponding 
to neutral (α = 0.5) preferences, and recall-oriented (α = 0.2), 
which we believe to be important in �find on this page� 
applications. 
The key problem in evaluating string-matching results on degraded 
text is obtaining a reliable correspondence between words in the 
ground truth file and their noisy counterparts.  A single word in 
the original document has a counterpart in the OCR document, but 
it may not be obvious what it is.  We need to be able to identify 
these correspondences in order to distinguish �true matches� and 
�false matches�.  Ideally, we would compare the geometric 
positions of the corresponding words in the image, but this kind of 
positional data is not currently available in either of our test sets. 



To solve this problem, we construct a syntactic signature for each 
word using N non-whitespace characters immediately leading or 
following the word.  In practice we use a value for N of 20.  To 
test if a word occurrence in the truth file is the same as one 
occurring in the degraded file, their signatures are compared 
according to a simple edit distance.  In this matching process we 
allow a relative error tolerance that is twice the average OCR error 
rate.  While this signature is theoretically not unique, in practice it 
works very well to compare word occurrences quickly.  We search 
for each query term in both the ground truth file and the 
corresponding OCR file and compare the two result lists using the 
syntactic signature.  With this matching, we can identify 
corresponding words in the ground truth and OCR documents. 

4.2 Results for TREC-5 Confusion Track Files 
The measurements on our subset of the TREC confusion corpus 
are shown below in Table 2.  The exact matching score is the 
accuracy obtained by exact matching of the query string to the 
OCR text.  The baseline measurement uses only the first phase of 
our algorithm to perform simple approximate matching without an 
error model.  We were primarily interested in the effectiveness of 
adding a trained error model for edit costs and a general language 
model for estimating word-level confidence, and the relative 
contributions of each.  We evaluated the effectiveness of adding 
the word heuristic but found no differences, so the results are 
omitted here for simplicity.  We also varied the final match 
threshold to allow for different error cost tolerances. The best-
performing parameters for each F value are shown in bold. 
Because the number of queries is large, even small differences in F 
are statistically significant.   For the TREC collection (1500 
queries), the average standard error about the mean is .0098, so 
differences that are .0196 or larger are significant at the .05 level; 
for the In-House collection (15000 queries), the average standard 
error about the mean is .0000856, so differences that are .0001678 

or larger are significant at the .05 level.  We focus our discussion 
on differences that are the most interesting theoretically or 
practically. 
Using a trained error model results in a higher value of both types 
of F value at every threshold setting.  For recall-oriented F, the 
error model gives the most useful improvements at threshold levels 
of 0.200 and above.  Adding the simple bigram language model to 
the trained error model gives a slight degradation in performance 
for all threshold values.  For recall-oriented F, the best 
performance (0.605) is achieved using the highest threshold 
setting shown.  The F value of 0.605 represents an 86.7% 
improvement over exact matching (0.324) and a 24.7% 
improvement over a simple approximate match approach (0.485). 
In general, an effective strategy is to pair sub-components that 
mainly boost recall and expand the set of initial candidates with 
those that improve precision and are good at eliminating false 
matches.  This experiment shows, however, that using a poor 
language model gave worse results than using none at all.  The 
reason for this is not clear and requires further experimentation.  
The language model was derived from a different corpus, which 
could influence its usefulness, and we only used simple heuristics 
for incorporating the estimated confidence information. 
We also examined the matching accuracy at various query lengths.  
An example of these results for a typical document is given in 
Figure 2.  The high final threshold of 0.900 was used to highlight 
the change in precision.  Precision of the matches generally 
improved as the length of the query increased.  This result is 
consistent with the fact that for longer English words there are 
fewer words that are �close� in terms of edit distance, and thus 
there are fewer potential mismatches.  The results suggest that 
using exact matching or a higher error threshold may be 
appropriate for shorter queries, when searching documents with 
word error rates comparable to the values we studied.  

                                               Table 2.  Results on TREC-5 degrade20 subset: Word Error Rate = 90% 

 Precision Recall Neutral-F 

% Gain 
vs 

Baseline 
% Gain 
vs Exact 

Recall-
oriented-

F 
% Gain vs 
Baseline 

% Gain 
vs Exact 

Exact matching 0.938 0.278 0.429 - - 0.324 - - 
Baseline, final threshold =0.100 0.887 0.279 0.424 - -1.18% 0.323 - - 
+error model 0.887 0.311 0.461 8.63% 7.34% 0.358 10.74% 10.44% 
+error model +language model 0.883 0.290 0.436 2.85% 1.64% 0.335 3.62% 3.34% 
Baseline, final threshold =0.200 0.887 0.279 0.424 - -1.16% 0.323 - -0.24% 
+error model 0.818 0.406 0.543 27.92% 26.43% 0.451 39.74% 39.41% 
+error model +language model 0.817 0.358 0.498 17.28% 15.92% 0.403 24.74% 24.44% 
Baseline, final threshold =0.300 0.879 0.302 0.450 - 4.77% 0.348 - 7.38% 
+error model 0.711 0.477 0.571 27.06% 33.12% 0.511 46.95% 57.80% 
+error model +language model 0.741 0.428 0.543 20.70% 26.46% 0.468 34.47% 44.40% 
Baseline, final threshold =0.400 0.819 0.342 0.482 - 12.36% 0.387 - 19.44% 
+error model 0.665 0.538 0.595 23.36% 38.61% 0.560 44.69% 72.81% 
+error model +language model 0.692 0.494 0.576 19.51% 34.28% 0.524 35.46% 61.79% 
Baseline, final threshold =0.500 0.678 0.423 0.521 - 21.28% 0.457 - 41.09% 
+error model 0.572 0.611 0.591 13.56% 37.72% 0.603 31.97% 86.20% 
+error model +language model 0.578 0.567 0.572 9.91% 33.30% 0.569 24.50% 75.66% 
Baseline, final threshold =0.600 0.496 0.482 0.489 - 13.94% 0.485 - 49.72% 
+error model 0.445 0.664 0.533 8.99% 24.19% 0.605 24.68% 86.67% 
+error model +language model 0.456 0.618 0.525 7.29% 22.24% 0.577 19.03% 78.20% 

 



 
 

 

                                Table 3.  Results on in-house corpus using trained confusion set.  Word Error Rate = 10% 
 

 Precision Recall Neutral-F 

% Gain 
Over 

Baseline 
% Gain 
vs Exact 

Recall-
oriented 

F 

%Gain 
Over 

Baseline 
% Gain 
vs Exact 

Exact matching 0.973 0.890 0.9297 - - 0.9054 - - 
Baseline, final threshold =0.100 0.962 0.888 0.9235 - -0.66% 0.9019 - -0.39% 
+ language 0.961 0.892 0.9252 0.18% -0.48% 0.9050 0.35% -0.05% 
+ language, + confidence 0.965 0.913 0.9383 1.60% 0.93% 0.9229 2.34% 1.93% 
+ confidence 0.965 0.905 0.9340 1.14% 0.47% 0.9164 1.61% 1.21% 
+ error model 0.964 0.892 0.9266 0.33% -0.33% 0.9055 0.40% 0.01% 
+ error model, + language 0.964 0.892 0.9266 0.33% -0.33% 0.9055 0.40% 0.01% 
+ error model, + lang. + conf. 0.966 0.910 0.9372 1.48% 0.81% 0.9207 2.08% 1.68% 
+ error model, + confidence 0.967 0.910 0.9376 1.53% 0.86% 0.9209 2.10% 1.70% 
Baseline, final threshold =0.200 0.950 0.894 0.9211 - -0.91% 0.9047 - -0.09% 
+ language 0.951 0.896 0.9227 0.17% -0.75% 0.9065 0.20% 0.11% 
+ language, + confidence 0.953 0.915 0.9336 1.35% 0.43% 0.9224 1.96% 1.87% 
+ confidence 0.964 0.914 0.9383 1.87% 0.93% 0.9236 2.09% 2.00% 
+ error model 0.950 0.894 0.9211 0.00% -0.91% 0.9047 0.00% -0.09% 
+ error model, + language 0.954 0.894 0.9230 0.20% -0.71% 0.9054 0.08% -0.01% 
+ error model, + lang., + conf. 0.957 0.912 0.9340 1.39% 0.46% 0.9207 1.77% 1.68% 
+ error model, + confidence 0.966 0.911 0.9377 1.80% 0.87% 0.9215 1.86% 1.77% 
Baseline, final threshold =0.300 0.892 0.898 0.8950 - -3.73% 0.8968 - -0.96% 
+ language 0.921 0.899 0.9099 1.66% -2.13% 0.9033 0.73% -0.24% 
+ language, + confidence 0.923 0.918 0.9205 2.85% -0.99% 0.9190 2.48% 1.50% 
+ confidence 0.960 0.914 0.9364 4.63% 0.73% 0.9228 2.90% 1.92% 
+ error model 0.893 0.898 0.8955 0.06% -3.67% 0.8970 0.02% -0.93% 
+ error model, + language 0.927 0.897 0.9118 1.87% -1.93% 0.9028 0.67% -0.29% 

+ error model, + lang., + conf. 0.929 0.915 0.9219 3.01% -0.83% 0.9178 2.34% 1.36% 
+ error model, + confidence 0.965 0.912 0.9378 4.78% 0.87% 0.9221 2.83% 1.84% 
Baseline, final threshold =0.400 0.776 0.902 0.8343 - -10.26% 0.8736 - -3.51% 
+ language 0.880 0.902 0.8909 6.78% -4.17% 0.8975 2.73% -0.88% 
+ language, + confidence 0.883 0.920 0.9011 8.01% -3.07% 0.9124 4.43% 0.76% 
+ confidence 0.956 0.917 0.9361 12.21% 0.69% 0.9245 5.83% 2.11% 
+ error model 0.777 0.902 0.8348 0.07% -10.20% 0.8739 0.03% -3.49% 
+ error model, + language 0.902 0.899 0.9005 7.94% -3.14% 0.8996 2.97% -0.65% 
+ error model, + lang., + conf. 0.904 0.917 0.9105 9.13% -2.07% 0.9144 4.66% 0.99% 
+ error model, + confidence 0.963 0.914 0.9379 12.42% 0.88% 0.9234 5.70% 1.98% 
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Figure 2. Change in Precision vs. Query Length 
Using a Typical Document, In-House Collection 

With Trained Error Model at Threshold of 0.900 
 

4.3 Results for In-House Collection, with 
Confidence Information 
For our in-house collection of documents, we had word-level 
confidence data available from the OCR engine.  This is typically 
a value between 0 (lowest confidence) and 1000 (highest 
confidence).  For the purposes of string matching, the confidence 
value for any sub-string of a word is approximated by the 
confidence value of the word itself. 
For this collection we examined the effect of a learned error 
model, a language model for estimating confidence, and word-
level confidence available from the recognizer.  We also looked at 
different final match thresholds and report precision, recall, 
neutral-F and recall-oriented F measures.  The results are 
presented in Table 3. 
Incorporating confidence information gave consistently higher 
overall accuracy � more than any other single component.  Using 
confidence information alone provides the largest gains, and 
adding the learned error model provides some additional small 
advantages for the neutral F and for recall-oriented F at the lowest 
threshold. 
In general, the contribution of the trained error model for the in-
house corpus was negligible or slightly negative.  This is likely 
due to the relatively low word error rate of the in-house corpus.  In 
addition, we used fewer training examples and thus had a less 
well-defined error model compared to the TREC-5 corpus. 

5. CONCLUSIONS 
We described an enhanced string-matching algorithm for degraded 
text.  The algorithm is more general than standard approximate 
matching algorithms, allowing string-to-string edits with arbitrary 
costs as well as the use of confidence information. We develop a 
method for evaluating our technique and use it to examine the 

relative effectiveness of each sub-component of the algorithm.  
Based on our experiments, we can draw the following conclusions. 
First, for users who weight recall more highly than precision, our 
algorithm provides improvement over both exact match and 
standard approximate matching without a trained error model.  For 
users with neutral precision/recall preferences, the benefits are 
smaller but still measurable.  The improvements were largest for 
the TREC collection, which had a higher word error rate. 
Second, using confidence data from the OCR engine, when 
available, results in the largest improvement in matching accuracy, 
compared to using a simple language model or a trained error 
model alone. 
Third, we recommend that the algorithm be applied to longer 
query terms only, such as those more than four characters long, 
with exact match or a lower error tolerance being used for shorter 
query terms. 
In general, although our algorithm depends on having trained 
confusion sets and confidence information to achieve its best 
performance, we believe this is entirely appropriate for 
applications that rely on a specific recognition engine. 
In future work, we intend to use character-level confidence 
information in the noisy channel analysis, and we will continue to 
explore methods for training better error models. We also intend to 
apply this approach to the output from handwriting recognition, 
and to include languages other than English in our analysis. 
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