
Improved String Matching Under Noisy Channel
Conditions

Kevyn Collins-Thompson‡

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052 USA
kevynct@microsoft.com

Charles Schweizer
Dept. of Electrical and Computer

Engineering
Duke University

Durham, NC 27708 USA
cbs2@ee.duke.edu

Susan Dumais
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
sdumais@microsoft.com

ABSTRACT
Many document-based applications, including popular Web
browsers, email viewers, and word processors, have a �Find on this
Page� feature that allows a user to find every occurrence of a given
string in the document. If the document text being searched is
derived from a noisy process such as optical character recognition
(OCR), the effectiveness of typical string matching can be greatly
reduced. This paper describes an enhanced string-matching
algorithm for degraded text that improves recall, while keeping
precision at acceptable levels. The algorithm is more general than
most approximate matching algorithms and allows string-to-string
edits with arbitrary costs. We develop a method for evaluating our
technique and use it to examine the relative effectiveness of each
sub-component of the algorithm. Of the components we varied,
we find that using confidence information from the recognition
process lead to the largest improvements in matching accuracy.

Keywords

Approximate String Matching, Information Retrieval Evaluation,
Noisy Channel Model, Optical Character Recognition.

1. INTRODUCTION
In this paper we describe an enhanced version of the standard
string search feature available in many document viewing and
editing applications. This feature allows the user to find every
occurrence of a given word or phrase within a single document.
Our algorithm can reliably detect correct matches even when there
are multiple errors in the underlying text, providing a useful
increase in recall while maintaining acceptable precision.
This is important for documents whose text is directly obtained
from processes such optical character recognition (OCR). Since
the recognition process will occasionally misrecognize letters or
combinations of letters with similar shapes, errors appear in the
resulting text. Typical error rates on a high-quality image can vary

widely depending on the complexity of the layout, scan resolution,
and so on. On average, for common types of documents, error
rates for OCR are often in the range of 1% to 10% of the total
characters on the page. This translates to word error rates of
roughly 5% to 50% for English.
Our approach, described in detail in Section 3, is to pre-filter
initial match candidates using an existing fast approximate match
procedure. We then score each candidate using an error model
based on the noisy channel model of Shannon [12]. In Section 4
we present a technique for evaluating the algorithm at various
parameter settings to examine the effectiveness and tradeoffs of
our model.

2. RELATED WORK
The problem of evaluating and improving retrieval performance on
degraded text has been widely studied. Most of this work has
focused on known-item or ranked document retrieval using a pre-
computed index. For example, the TREC 4 and 5 OCR confusion
tracks [4] and more recent TREC Spoken Document Retrieval
evaluations [2], have been the basis for several studies. In general,
document retrieval as measured by usual precision and recall
methods is fairly robust in the face of OCR recognition errors,
assuming relatively good scanned images [13][15]. This is
because a document usually consists of many occurrences of
individual words, many of which will be correctly recognized. An
extensive analysis of the effect of OCR errors and other types of
data corruption on information retrieval can be found in
Mittendorf [6]. Specific application examples include the video
mail retrieval system of Jones et al. [3], and a spoken document
retrieval system developed by Ng and Zue [9].
In contrast to document retrieval, we are interested in the situation
where we wish to find every instance of a word or phrase within a
single document very quickly. The �Find on this Page� option in
popular Web browsers or Microsoft Office applications are
examples of the functionality we wish to support. In our
application, recognition errors will cause retrieval failures and thus
we need to use approximate matching techniques.
The literature on approximate string matching is extensive. A
good overview may be found in [8]. Most approaches use an �edit

� Author may now be reached at: School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA 15232 USA.
E-mail: kct@cs.cmu.edu

distance� model of errors in which single character insertions,
deletions, and substitutions are allowed, with different costs
associated with the different transformations. The popular
approximate matching tool agrep [14], and the string similarity
techniques of Ristad and Yianalos [11] can both accept fairly
sophisticated error model descriptions, but are not quite as general
as our algorithm, which can use string to string edits with arbitrary
costs as well as make use of optional confidence data and language
models. Brill and Moore use this more general model for
automatic spelling correction [1]. Some commercial OCR
products such as zyFind� [16] have incorporated an error-tolerant
phrase search based on simple edit distance, but these features are
equivalent to just using the first pass of our algorithm. Most of the
work on approximate string matching examines the computational
complexity of algorithms. There has been comparatively little
work that applies the more complex recognition error models and
evaluates their accuracy in a systematic fashion as we do in this
paper.

3. ALGORITHM DESCRIPTION
The algorithm begins with the following inputs:

! A clean query string, without typographical or other errors.
! The document text to be searched, which includes OCR

errors.
! An initial threshold value that indicates the error tolerance to

be used for finding initial candidates.
! A confusion set describing the most likely types of OCR

errors, along with their edit costs.
! Optionally, a table giving the confidence (likelihood of

correctness) for each character and/or word in the OCR text.
! A final threshold value used to set the maximum acceptable

edit cost.
To find each match, our algorithm passes through the phases
shown in Figure 1.
First, a standard fast approximate string-match algorithm is used as
a pre-filter to obtain match candidates. The key property of this
step is that it eliminates unlikely matches very quickly.
Second, once the pre-filter identifies a possible match candidate,
we perform a noisy channel analysis, using a dynamic
programming algorithm to examine all possible partitioning
alternatives to select optimal candidates. The analysis uses an
error model which is trained on representative output from the
OCR engine.
Third, OCR confidence data is used, if available, to adjust the
candidate�s score, along with optional word-based heuristics or
language models.
Finally, we make a match decision based on whether the
candidate�s score exceeded a final threshold.
Each of these phases is described in detail in the following
sections.

 Document

 Text

Approximate
Match Prefilter

Query

 OCR Confidence
Data

(if available)

Initial
Threshold

 Noisy Channel
Cost

 Analysis

Word Heuristics
 (optional)

Language Model
 (optional)

 Match Decision

Final
Threshold

 Confusion Set

 Figure 1. Algorithm Flow Diagram

3.1 Pre-filtering
To find initial match candidates we use a standard approximate
string matching routine with a �generous� maximum error
threshold. We use a variant of the method developed by Myers in
[7]. His algorithm has been optimized for speed and to use
minimal storage space.
The initial threshold, K, indicates the average number of errors per
character to be permitted in a match candidate. An error is
considered to be an insertion, deletion, or substitution of a single
character relative to the original string. Larger values of K
increase recall slightly but use more computation time, because
more candidates must be examined. When K = 0 this is equivalent
to exact matching. For our experiments we used a value of K =
5/8, which allows an average of 5 character errors for an 8 letter
word. We multiply K by the length of the query string to obtain
the maximum edit distance to be allowed when matching, and
search forward through the text until a match candidate is found.
The final result of this phase is a set of match candidates, each
described by a position and a length relative to the input buffer.

3.2 Noisy Channel Cost Analysis
The noisy channel model is one in which source data (for example,
the original document text, encoded as an image) is perturbed by
noise introduced during a channel process (scanning and OCR),
thereby introducing errors into the output data (OCR output text).
The result of noisy channel analysis is a probability estimate that a
query matches the candidate found in the pre-filter phase.
We model the channel noise introduced during OCR by learning a
confusion set of typical string-to-string edits. For example, the
letter bigram �rn� in the original document is often output as the
single letter �m� in the OCR document. Typically the entries in the
confusion set comprise combinations of no more than three or four
letters, although this is a practical restriction invoked during
training, not a limitation of the algorithm.
Each string-to-string edit in the confusion set has an associated
probability, namely, the posterior probability p(s | R), where s
represents the original string and R is the corresponding erroneous
OCR string. This value is obtained via Bayes Theorem, in which,
ignoring the constant denominator, p(s | R) is given by p(R | s) ·
p(s). The training process by which we obtain estimates for
p(R | s) and p(s) is described in Section 3.3. We take the negative
logarithm of p(R | s) and call this the edit cost of the string-to-

string edit. It is stored in the confusion set with the corresponding
edit entry. A sample confusion set is shown in Table 1.
Given a confusion set C of m entries

{s1 → R1, s2 → R2, �, sm → Rm}
which have corresponding edit costs {c1, c2, �, cm}, a query term
Q, and a candidate match T in the OCR text, we can calculate the
probability that Q matches T as follows.
First, let us assume that we have already have a partitioning of the
query into n substrings {Q1, Q2, �, Qn}, such that for each Qi,
there is a corresponding set of characters Ti in T (possibly empty).
If there is more than one possible confusion set entry that matches
Qi and Ti, we choose the one with lowest cost. Exactly one of these
possibilities is satisfied for each Qi:

1. Qi maps without errors to its counterpart Ti , with
probability pCORRECT(Qi).

2. Qi has an entry in the confusion set such that it
maps to Ti according to the entry sj → Rj, with edit
cost cj.

3. Qi maps to some set of characters Ti, but this
mapping is not in the confusion set. In this case,
we estimate the costs by a series of single character
insertions, deletions, or substitutions. The
probabilities of these operations may vary for
individual characters, but for simplicity we denote
the overall probabilities as pINSERT(Qi), pDELETE(Qi)
and pSUBST(Qi) respectively.

If we denote the set of all possible partitions of Q by Part(Q), and
assume the transformations are all independent, then we want the
most likely of all possible partitions, hence:

p(Q | T) =
)(

maxarg
QPartD ∈

∏
∈ DQi

p(Qi → Ti)

We expand the term p(Qi → Ti) in terms of the probabilities for the
cases above. Given a specific partition D, we denote the set of all
Qi that map without errors as Qa, the set that correspond to a
confusion set entry as Qb, and so on. After taking the negative
logarithm, we have an expression for the total edit cost CTOTAL for
the transformation of Q to T:

CTOTAL =
)(

minarg
QPartD ∈
∑

∈
−

DQa

log pCORRECT(Qa)

+ ∑
∈ DQb

cb + ∑
∈

−
DQc

log pINSERT (Qc)

+ ∑
∈

−
DQd

log pDELETE (Qd) + ∑
∈

−
DQe

log pSUBST (Qe).

We obtain the most likely partitioning of the query string using a
dynamic programming algorithm, setting the costs of pINSERT,
pDELETE and pSUBST using statistics derived from the training phase.
For a concrete example, suppose we are searching for the string
�amendment� and come across the document text
�arneadme,nt�. For this example we set pCORRECT (x) = 0.9,
pINSERT (x) = pSUBST (x) = 0.1, pDELETE (x) = 0.01 for all strings x,
and use the edit costs from Table 1.

Table 1. Example Confusion Set

s → R - log p(R | s)
(edit cost)

am → arn 1.074

en → ea 0.956

en → e,n 4.400

nt → at 1.013

end → ead 0.708

end → eud 2.508

men → rnea 0.858

me →me, 1.211

We have several different ways that the word �amendment� can be
partitioned based on this table. For example:

1. am | end | me | nt
2. a | men | d | me | nt

In the first case above, the total edit cost to transform �am | end |
me | nt� into the corresponding OCR strings �arn | ead | me, | nt�
would be calculated as follows.
C1 = - log p(am→ arn) - log p(end → ead) - log p(me→ me,)
 - log pCORRECT (nt→nt)
 = 1.074 + 0.708 + 1.211 + 0.105 = 3.098
Compare this to the optimal partitioning, �a | men | d | me | nt�,
which gives:
C2 = - log pCORRECT (a→ a) - log p(men → rnea)
 - log pCORRECT (d→ d) - log p(me → me,)
 - log pCORRECT (nt→nt)
 = 0.105 + 0.858 + 0.105 + 1.211 + 0.105 = 2.384
These edit cost values are passed to the third phase for possible
adjustment before the comparison to the final threshold.
With the final threshold set to 0.300, and 9 characters in the query
term, the threshold for this query is 9 · 0.300 = 2.700. If no other
modifications to the final threshold or costs are made, case 2
would be considered a valid match since the candidate cost of
2.384 is less than the final threshold of 2.700. Case 1 would not
be considered a valid match since its score of 3.098 is greater than
the final threshold of 2.700.

3.3 Training the Model
To train our noisy channel error model we selected a subset of files
not used in the evaluation, amounting to approximately 20% of the
total text size in each corpus.
Using this sub-collection, we ran a processing pass similar to that
used for evaluation in Section 4, but using a high error tolerance �
typically with an expected error rate of 3 errors every 4 characters.
Using the syntactic signature method described in Section 4, we
extract the correct matches from these results to get a set of pairs
(S, T) where S is a word from the ground-truth file and T is the
corresponding noisy OCR word.

For each (S, T) pair, we found the greatest common substrings
between S and T, from which we derived an initial set of possible
edits. We then expanded this set using up to 3 characters of
context on either side of the edit, for both the ground-truth word
and the OCR word. For each edit s → R in this expanded set, we
kept track of the edit�s overall frequency, the frequency of all other
edits based on s, and the total frequency of s in the corpus. From
this we calculate p(R | s) and thus the edit cost

c = �log p(R | s).
We also calculate p(s) and then select the most useful edits � those
with the highest values of p(R | s) · p(s). For our experiments we
kept the top 2500 edits.

3.4 Optional Processing
In the third phase, we make use of confidence information and
heuristics to adjust the candidate�s edit cost.

3.4.1 Word Heuristics
Since users often search on one or more complete words, the
algorithm can be modified to include position-based probabilities
that reflect the importance that a match be close to a complete
word or word prefix. For our experiments we tested for either
punctuation or whitespace at the start and end of a match, and
reduced error costs by 0.25 for a word prefix match and 0.50 for
an entire word match.

3.4.2 Language Models
Even when we do not have confidence information from the
recognizer, we can calculate a rough confidence estimate based on
simple language models. Since our documents were in English,
we used a frequency table of English bigrams (obtained on a
separate training corpus) and gave either a �low� or �high�
confidence estimate to any words containing at least one �rare�
bigram or none, respectively.

3.4.3 Using Confidence Data
If the recognition process provides character or word-level
confidence data, we can use this information. We do this by
increasing edit costs in the noisy channel model according to a
region�s confidence value. For high-confidence regions, this
essentially reduces to performing exact matching. The recognition
engine may sometimes give an indeterminate confidence value for
a word, in which case the language model may be optionally
invoked to supply an estimate. Ideally, we would make use of
character-level confidence data, and plan to do so in future
versions. Our current implementation only stores word-level
confidence data in the document to reduce the file size.

3.5 Match Decision
In the fourth phase, we compare the final threshold against the
match candidate�s score. If the candidate�s score is above the final
threshold, it is not counted as a match.

4. EVALUATION
4.1 Methodology
We compare baseline word matching performance with our
algorithm using various sub-components such as the OCR
confusion set, word heuristics, and word-level confidence.
We ran experiments using two different test collections.

1. A subset of 5 documents from the TREC-5 confusion track
corpus [4]. These documents are from the 1994 Federal Register
and contain about 20,000 words. This text has no confidence data
available, and the OCR conversion was done by NIST. The
character error rate for this subset is approximately 20% and the
word error rate is roughly 90%.
2. A collection of 200 document images with ground truth text
and corresponding OCR text, containing approximately 100,000
English word occurrences. The OCR text contains word-level
confidence scores and was generated using an OCR engine
licensed from Scansoft, Inc. The character error rate for this set is
approximately 2% and the word error rate is roughly 10%.
We perform whitespace-delimited word-breaking and remove
stopwords from the ground truth files to obtain a list of query
terms. For each document, we ask every unique word in the
ground truth document as a �query�, giving us approximately
1,500 queries from the first test collection and 15,000 from the
second. We assume that the query is clean, containing no spelling
or typographical errors. There are scenarios where our algorithm
could be useful with queries containing errors but we do not
address those in this paper.
We want to measure how accurately we find each query in the
OCR�d document. We define a �true match� as a string in the
OCR�d document that matches the corresponding query term in
the ground truth document. Occasionally, mismatches in the
original document are corrupted by the OCR process into strings
that match in the OCR�d document; these are �false matches�. Any
query, for which a word exists in the ground truth document, but
which fails to find the corresponding word in the OCR document,
is termed a �miss�.
If the numbers of true matches, false matches, and misses are t, f,
and m respectively, then precision p and recall r are derived using
the formulas:

ft
tp

+
= ,

mt
tr

+
=

We also report van Reijsbergen�s F-measure [10] to provide a
single number that combines precision p and recall r for evaluation
purposes. This is given by:

pr
prF

)1(
)(

αα
α

−+
=

The relative importance given to precision versus recall is
expressed through the parameter α. When α = 0.5, they are given
equal weight. We include two different values of α, corresponding
to neutral (α = 0.5) preferences, and recall-oriented (α = 0.2),
which we believe to be important in �find on this page�
applications.
The key problem in evaluating string-matching results on degraded
text is obtaining a reliable correspondence between words in the
ground truth file and their noisy counterparts. A single word in
the original document has a counterpart in the OCR document, but
it may not be obvious what it is. We need to be able to identify
these correspondences in order to distinguish �true matches� and
�false matches�. Ideally, we would compare the geometric
positions of the corresponding words in the image, but this kind of
positional data is not currently available in either of our test sets.

To solve this problem, we construct a syntactic signature for each
word using N non-whitespace characters immediately leading or
following the word. In practice we use a value for N of 20. To
test if a word occurrence in the truth file is the same as one
occurring in the degraded file, their signatures are compared
according to a simple edit distance. In this matching process we
allow a relative error tolerance that is twice the average OCR error
rate. While this signature is theoretically not unique, in practice it
works very well to compare word occurrences quickly. We search
for each query term in both the ground truth file and the
corresponding OCR file and compare the two result lists using the
syntactic signature. With this matching, we can identify
corresponding words in the ground truth and OCR documents.

4.2 Results for TREC-5 Confusion Track Files
The measurements on our subset of the TREC confusion corpus
are shown below in Table 2. The exact matching score is the
accuracy obtained by exact matching of the query string to the
OCR text. The baseline measurement uses only the first phase of
our algorithm to perform simple approximate matching without an
error model. We were primarily interested in the effectiveness of
adding a trained error model for edit costs and a general language
model for estimating word-level confidence, and the relative
contributions of each. We evaluated the effectiveness of adding
the word heuristic but found no differences, so the results are
omitted here for simplicity. We also varied the final match
threshold to allow for different error cost tolerances. The best-
performing parameters for each F value are shown in bold.
Because the number of queries is large, even small differences in F
are statistically significant. For the TREC collection (1500
queries), the average standard error about the mean is .0098, so
differences that are .0196 or larger are significant at the .05 level;
for the In-House collection (15000 queries), the average standard
error about the mean is .0000856, so differences that are .0001678

or larger are significant at the .05 level. We focus our discussion
on differences that are the most interesting theoretically or
practically.
Using a trained error model results in a higher value of both types
of F value at every threshold setting. For recall-oriented F, the
error model gives the most useful improvements at threshold levels
of 0.200 and above. Adding the simple bigram language model to
the trained error model gives a slight degradation in performance
for all threshold values. For recall-oriented F, the best
performance (0.605) is achieved using the highest threshold
setting shown. The F value of 0.605 represents an 86.7%
improvement over exact matching (0.324) and a 24.7%
improvement over a simple approximate match approach (0.485).
In general, an effective strategy is to pair sub-components that
mainly boost recall and expand the set of initial candidates with
those that improve precision and are good at eliminating false
matches. This experiment shows, however, that using a poor
language model gave worse results than using none at all. The
reason for this is not clear and requires further experimentation.
The language model was derived from a different corpus, which
could influence its usefulness, and we only used simple heuristics
for incorporating the estimated confidence information.
We also examined the matching accuracy at various query lengths.
An example of these results for a typical document is given in
Figure 2. The high final threshold of 0.900 was used to highlight
the change in precision. Precision of the matches generally
improved as the length of the query increased. This result is
consistent with the fact that for longer English words there are
fewer words that are �close� in terms of edit distance, and thus
there are fewer potential mismatches. The results suggest that
using exact matching or a higher error threshold may be
appropriate for shorter queries, when searching documents with
word error rates comparable to the values we studied.

 Table 2. Results on TREC-5 degrade20 subset: Word Error Rate = 90%

 Precision Recall Neutral-F

% Gain
vs

Baseline
% Gain
vs Exact

Recall-
oriented-

F
% Gain vs
Baseline

% Gain
vs Exact

Exact matching 0.938 0.278 0.429 - - 0.324 - -
Baseline, final threshold =0.100 0.887 0.279 0.424 - -1.18% 0.323 - -
+error model 0.887 0.311 0.461 8.63% 7.34% 0.358 10.74% 10.44%
+error model +language model 0.883 0.290 0.436 2.85% 1.64% 0.335 3.62% 3.34%
Baseline, final threshold =0.200 0.887 0.279 0.424 - -1.16% 0.323 - -0.24%
+error model 0.818 0.406 0.543 27.92% 26.43% 0.451 39.74% 39.41%
+error model +language model 0.817 0.358 0.498 17.28% 15.92% 0.403 24.74% 24.44%
Baseline, final threshold =0.300 0.879 0.302 0.450 - 4.77% 0.348 - 7.38%
+error model 0.711 0.477 0.571 27.06% 33.12% 0.511 46.95% 57.80%
+error model +language model 0.741 0.428 0.543 20.70% 26.46% 0.468 34.47% 44.40%
Baseline, final threshold =0.400 0.819 0.342 0.482 - 12.36% 0.387 - 19.44%
+error model 0.665 0.538 0.595 23.36% 38.61% 0.560 44.69% 72.81%
+error model +language model 0.692 0.494 0.576 19.51% 34.28% 0.524 35.46% 61.79%
Baseline, final threshold =0.500 0.678 0.423 0.521 - 21.28% 0.457 - 41.09%
+error model 0.572 0.611 0.591 13.56% 37.72% 0.603 31.97% 86.20%
+error model +language model 0.578 0.567 0.572 9.91% 33.30% 0.569 24.50% 75.66%
Baseline, final threshold =0.600 0.496 0.482 0.489 - 13.94% 0.485 - 49.72%
+error model 0.445 0.664 0.533 8.99% 24.19% 0.605 24.68% 86.67%
+error model +language model 0.456 0.618 0.525 7.29% 22.24% 0.577 19.03% 78.20%

 Table 3. Results on in-house corpus using trained confusion set. Word Error Rate = 10%

 Precision Recall Neutral-F

% Gain
Over

Baseline
% Gain
vs Exact

Recall-
oriented

F

%Gain
Over

Baseline
% Gain
vs Exact

Exact matching 0.973 0.890 0.9297 - - 0.9054 - -
Baseline, final threshold =0.100 0.962 0.888 0.9235 - -0.66% 0.9019 - -0.39%
+ language 0.961 0.892 0.9252 0.18% -0.48% 0.9050 0.35% -0.05%
+ language, + confidence 0.965 0.913 0.9383 1.60% 0.93% 0.9229 2.34% 1.93%
+ confidence 0.965 0.905 0.9340 1.14% 0.47% 0.9164 1.61% 1.21%
+ error model 0.964 0.892 0.9266 0.33% -0.33% 0.9055 0.40% 0.01%
+ error model, + language 0.964 0.892 0.9266 0.33% -0.33% 0.9055 0.40% 0.01%
+ error model, + lang. + conf. 0.966 0.910 0.9372 1.48% 0.81% 0.9207 2.08% 1.68%
+ error model, + confidence 0.967 0.910 0.9376 1.53% 0.86% 0.9209 2.10% 1.70%
Baseline, final threshold =0.200 0.950 0.894 0.9211 - -0.91% 0.9047 - -0.09%
+ language 0.951 0.896 0.9227 0.17% -0.75% 0.9065 0.20% 0.11%
+ language, + confidence 0.953 0.915 0.9336 1.35% 0.43% 0.9224 1.96% 1.87%
+ confidence 0.964 0.914 0.9383 1.87% 0.93% 0.9236 2.09% 2.00%
+ error model 0.950 0.894 0.9211 0.00% -0.91% 0.9047 0.00% -0.09%
+ error model, + language 0.954 0.894 0.9230 0.20% -0.71% 0.9054 0.08% -0.01%
+ error model, + lang., + conf. 0.957 0.912 0.9340 1.39% 0.46% 0.9207 1.77% 1.68%
+ error model, + confidence 0.966 0.911 0.9377 1.80% 0.87% 0.9215 1.86% 1.77%
Baseline, final threshold =0.300 0.892 0.898 0.8950 - -3.73% 0.8968 - -0.96%
+ language 0.921 0.899 0.9099 1.66% -2.13% 0.9033 0.73% -0.24%
+ language, + confidence 0.923 0.918 0.9205 2.85% -0.99% 0.9190 2.48% 1.50%
+ confidence 0.960 0.914 0.9364 4.63% 0.73% 0.9228 2.90% 1.92%
+ error model 0.893 0.898 0.8955 0.06% -3.67% 0.8970 0.02% -0.93%
+ error model, + language 0.927 0.897 0.9118 1.87% -1.93% 0.9028 0.67% -0.29%

+ error model, + lang., + conf. 0.929 0.915 0.9219 3.01% -0.83% 0.9178 2.34% 1.36%
+ error model, + confidence 0.965 0.912 0.9378 4.78% 0.87% 0.9221 2.83% 1.84%
Baseline, final threshold =0.400 0.776 0.902 0.8343 - -10.26% 0.8736 - -3.51%
+ language 0.880 0.902 0.8909 6.78% -4.17% 0.8975 2.73% -0.88%
+ language, + confidence 0.883 0.920 0.9011 8.01% -3.07% 0.9124 4.43% 0.76%
+ confidence 0.956 0.917 0.9361 12.21% 0.69% 0.9245 5.83% 2.11%
+ error model 0.777 0.902 0.8348 0.07% -10.20% 0.8739 0.03% -3.49%
+ error model, + language 0.902 0.899 0.9005 7.94% -3.14% 0.8996 2.97% -0.65%
+ error model, + lang., + conf. 0.904 0.917 0.9105 9.13% -2.07% 0.9144 4.66% 0.99%
+ error model, + confidence 0.963 0.914 0.9379 12.42% 0.88% 0.9234 5.70% 1.98%

Precision vs Query Length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11 12 13

Que r y Le ngt h (i n Cha r a c t e r s)

Pr
ec

is
io

n

Figure 2. Change in Precision vs. Query Length
Using a Typical Document, In-House Collection

With Trained Error Model at Threshold of 0.900

4.3 Results for In-House Collection, with
Confidence Information
For our in-house collection of documents, we had word-level
confidence data available from the OCR engine. This is typically
a value between 0 (lowest confidence) and 1000 (highest
confidence). For the purposes of string matching, the confidence
value for any sub-string of a word is approximated by the
confidence value of the word itself.
For this collection we examined the effect of a learned error
model, a language model for estimating confidence, and word-
level confidence available from the recognizer. We also looked at
different final match thresholds and report precision, recall,
neutral-F and recall-oriented F measures. The results are
presented in Table 3.
Incorporating confidence information gave consistently higher
overall accuracy � more than any other single component. Using
confidence information alone provides the largest gains, and
adding the learned error model provides some additional small
advantages for the neutral F and for recall-oriented F at the lowest
threshold.
In general, the contribution of the trained error model for the in-
house corpus was negligible or slightly negative. This is likely
due to the relatively low word error rate of the in-house corpus. In
addition, we used fewer training examples and thus had a less
well-defined error model compared to the TREC-5 corpus.

5. CONCLUSIONS
We described an enhanced string-matching algorithm for degraded
text. The algorithm is more general than standard approximate
matching algorithms, allowing string-to-string edits with arbitrary
costs as well as the use of confidence information. We develop a
method for evaluating our technique and use it to examine the

relative effectiveness of each sub-component of the algorithm.
Based on our experiments, we can draw the following conclusions.
First, for users who weight recall more highly than precision, our
algorithm provides improvement over both exact match and
standard approximate matching without a trained error model. For
users with neutral precision/recall preferences, the benefits are
smaller but still measurable. The improvements were largest for
the TREC collection, which had a higher word error rate.
Second, using confidence data from the OCR engine, when
available, results in the largest improvement in matching accuracy,
compared to using a simple language model or a trained error
model alone.
Third, we recommend that the algorithm be applied to longer
query terms only, such as those more than four characters long,
with exact match or a lower error tolerance being used for shorter
query terms.
In general, although our algorithm depends on having trained
confusion sets and confidence information to achieve its best
performance, we believe this is entirely appropriate for
applications that rely on a specific recognition engine.
In future work, we intend to use character-level confidence
information in the noisy channel analysis, and we will continue to
explore methods for training better error models. We also intend to
apply this approach to the output from handwriting recognition,
and to include languages other than English in our analysis.

6. ACKNOWLEDGEMENTS
The authors would like to thank John Platt, Rado Nickolov, and an
anonymous reviewer for their suggestions on earlier drafts, and
Henry Burgess and Stephen Robertson for helpful discussions.

7. REFERENCES
[1] Brill, E., and Moore, R.C. An improved error model for

noisy channel spelling correction. Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics (ACL 2000), Hong Kong, Oct. 2000.

[2] Garofolo, J., Auzanne, C., and Voorhees, E. The TREC
spoken document retrieval track: A success story.
Proceedings of the Eighth Text REtrieval Conference (TREC-
8), E. Voorhees, Ed., Gaithersburg, Maryland, USA, Nov. 16-
19, 1999.

[3] Jones, G., Foote, J., Jones, K. S., and Young, S. Video mail
retrieval: The effect of word spotting accuracy on precision.
Proceedings of 1995 International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’95), Detroit, MI,
309-312, May 1995.

[4] Kantor, P., and Voorhees, E. M. The TREC-5 Confusion
Track: Comparing Retrieval Methods for Scanned Text.
Information Retrieval, vol. 2, 165-176, 2000.

[5] Marukawa, K., Hu, T., Fujisawa, H., and Shima, Y.
Document retrieval tolerating character recognition errors �
evaluation and application. Pattern Recognition, vol. 30, no.
8, 1361-1371, 1997.

[6] Mittendorf, E., Data Corruption and Information Retrieval.
PhD thesis, ETH Zürich, Institute of Computer Systems,

January 1998.
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th12507.ps.gz

[7] Myers, G. A fast bit-vector algorithm for approximate
pattern matching based on dynamic programming.
Proceedings of Combinatorial Pattern Matching ‘98,
Springer-Verlag, 1-13, 1998.

[8] Navarro, G. Approximate Text Searching. PhD thesis, Dept.
of Computer Science, Univ. of Chile, December 1998.
Technical Report TR/DCC-98-14.
ftp://ftp.dcc.uchile.cl/pub/-users/gnavarro/thesis98.ps.gz

[9] Ng, K., and Zue, V. Subword unit representations for spoken
document retrieval. Proceedings of Eurospeech ’97, Rhodes,
Greece, 1607-1610, Sept. 1997.

[10] van Rijsbergen, C. J. Information Retrieval. Butterworths,
London, 2nd edition, 1979.

[11] Ristad, E. S., and Yianilos, P. N. Learning string edit
distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 5, 522�532, 1998.

[12] Shannon, C. A mathematical theory of communication. Bell
System Technical Journal, vol. 27, no. 3, 379-423, 1948.

[13] Taghva, K., Borsack, J., Condit, A., and Erva, S. The effects
of noisy data on text retrieval. UNLV Information Science
Research Institute Annual Report, 71�80, 1993.

[14] Wu, S., and Manber, U. Fast text searching allowing errors.
Communications of the ACM, vol. 35, no. 10, 83-91, 1992.

[15] Zhai, C., Tong, X., Milic-Frayling, N., and Evans, D. OCR
correction and expansion for retrieval on OCR data �
CLARIT TREC-5 confusion track report. Proceedings of the
Fifth Text REtrieval Conference (TREC-5), Gaithersburg,
MD, USA, NIST-SP 500-238, Nov. 1996.

[16] ZyFind� � A subsystem of ZyImage�, ZyLAB International
Inc., Rockville, MD. http://www.zylab.com/

